如图,三条直线、、两两平行,直线、间的距离为,直线、间的距离为,、为直线上的两个定点,且,是在直线上滑动的长度为的线段.(1)建立适当的平面直角坐标系,求△的外心的轨迹;(2)当△的外心在上什么位置时,使最小?最小值是多少?(其中,为外心到直线的距离)
已知、为椭圆的左、右焦点,且点在椭圆上. (1)求椭圆的方程; (2)过的直线交椭圆于两点,则的内切圆的面积是否存在最大值,若存在其最大值及此时的直线方程;若不存在,请说明理由.
已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号; (2)若函数在区间上有最大值为,求的值.
如图,在三棱锥中,,,为的中点,. (1)求证:平面平面; (2)如果三棱锥的体积为,求.
2014年索契冬季奥运会,已经在2014年02月07日至02月23日在俄罗斯联邦索契市举行.该市为了缓解交通压力,大力发展公共交通.为了调查市民乘公交车的候车情况,交通主管部门从在某站台等车的45名候车乘客中随机抽取15人,按照他们的候车时间(单位:分钟)作为样本分成6组,如下表所示: (1)估计这45名乘客中候车时间少于12分钟的人数; (2)若从上表第四、五组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.
在中,分别是内角的对边,且,且. (1)求角的大小; (2)若边上高为1,求面积的最小值.