.(本小题满分14分)设函数.其中为常数.(Ⅰ)证明:对任意,的图象恒过定点;(Ⅱ) 设,若为定义域上的增函数,求的最大值;(Ⅲ)当时,函数是否存在极值?若存在,求出极值;若不存在,说明理由.
如图,已知底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长为2cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出左边部分的面积y与x的函数解析式,并画出大致图象.
二次函数f(x)满足且f(0)=1. (1)求f(x)的解析式; (2)若在区间上, 不等式f(x)2x+m恒成立,求实数m的范围.
已知,,为的一次函数,求
设,曲线y = f(x)在点(2,f(2))处的切线方程为y = x+3. (1)求f(x)的解析式; (2)若x∈[2,3]时,f(x)≥bx恒成立,求实数b的取值范围.