选修4—1:几何证明选讲如图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(1)求AC的长;(2)求证:BE=EF.
已知抛物线.(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;(3)若过点且相互垂直的两条直线,抛物线与交于点与交于点.证明:无论如何取直线,都有为一常数.
如图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于,两点,且、、三点互不重合.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.
已知椭圆C:()的短轴长为2,离心率为.(1)求椭圆C的方程(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?
·大纲理)已知双曲线C:(a>0,b>0)的左、右焦点分别为、,离心率为3,直线y=2与C的两个交点间的距离为.(1)求a,b;(2)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:、、成等比数列.
已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点. (1)求椭圆的方程; (2)求 面积的最大值,并求此时直线的方程.