本题共有2个小题,第1小题满分8分,第2小题满分6分.为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品。已知该单位每月的处理量最多不超过300吨,月处理成本(元)与月处理量(吨)之间的函数关系式可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为300元。(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?
为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题: (1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号; (2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图; (3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?
(12分) 如图,在四边形中,. (1)求边的长; (2)求四边形的面积; (3)求的值.
已知椭圆的参数方程 (为参数),求椭圆上一点P到直线(为参数)的最短距离。
如图,在⊙O中,弦CD垂直于直径AB, 求证:。
设函数 (1)解不等式; (2)若关于的不等式有解,求实数的取值范围。