从4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加某项服务工作.(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.
已知椭圆C:的左右焦点分别为,点B为椭圆与轴的正半轴的交点,点P在第一象限内且在椭圆上,且与轴垂直, (1)求椭圆C的方程;(2)设点B关于直线的对称点E(异于点B)在椭圆C上,求的值。
已知三点(1).求以为焦点且过点P的椭圆的标准方程;(2)设点P, 关于直线的对称点分别为,求以为焦点且过点的双曲线的标准方程。
已知是圆上满足条件的两个点,其中O是坐标原点,分别过A、B作轴的垂线段,交椭圆于点,动点P满足.(1)求动点P的轨迹方程;(2)设和分别表示和的面积,当点P在轴的上方,点A在轴的下方时,求+的最大值。
已知函数.(1)若在R上为增函数,求实数的取值范围;(2)若当时,不等式恒成立,求实数的取值范围。
已知抛物线上一点M(1,1),动弦ME、MF分别交轴与A、B两点,且MA=MB。证明:直线EF的斜率为定值。