已知抛物线 的准线方程为,与直线 在第一象限相交于点,过作的切线,过作的垂线交x轴正 半轴于点,过作的平行线交抛物线于第一象限内的点,过作 的切线,过作的垂线交x轴正半轴于点,依此类推,在x 轴上形成一点列,,()设 的坐标为() (Ⅰ)求抛物线的方程;(Ⅱ)试探求 关于 的递推关系;
如图所示,在△ABC中,AB=AC,D是BC的中点,DE⊥AC,E是垂足,F是DE的中点,求证AF⊥BE.
如图所示,正方形ABCD中,P为对角线BD上的一点,PECF是矩形,用向量方法证明PA=EF.
在▱ABCD中,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线. .
一条宽为km的河,水流速度为2km/h,在河两岸有两个码头A、B,已知AB=km,船在水中最大航速为4km/h,问该船从A码头到B码头怎样安排航行速度可使它最快到达彼岸B码头?用时多少?
在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.