(本小题满分12分)已知是公差为正数的等差数列,首项,前n项和为Sn,数列是等比数列,首项(1)求的通项公式.(2)令的前n项和Tn.
(本小题10分)如图,已知AP是O的切线,P为切点,AC是O的割线,与O交于B,C两点,圆心O在PAC的内部,点M是BC的中点。(1) 证明:A,P,O,M四点共圆;(2) 求OAM+APM的大小。
已知二次函数。 (1)若函数在区间[-1,1]上存在零点,求实数q的取值范围; (2)问是否存在常数t(t≥0),当x∈[t,10]时,f(x)的最大值与最小值之差为12-t。
函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时为增函数,且f(1)=0。(1)求关于t的方程f(2t+5)=0的解;(2)求不等式f[x(x-)]<0的解集。
已知△ABC是边长为2的正三角形,如图,P,Q依次是AB,AC边上的点,且线段PQ将△ABC分成面积相等的两部分,设AP=x,AQ=t,PQ=y,求: (1)t关于x的函数关系式; (2)y关于x的函数关系式; (3)y的最小值和最大值。
已知函数(1)求f(x);(2)求f(x)在区间[2,6]上的最大值和最小值。