如图,、为圆柱的母线,是底面圆的直径,、分别是、的中点,.(1)证明:;(2)证明:;(3)求四棱锥与圆柱的体积比.
设函数.(1)求函数的最小正周期及其在区间上的值域;(2)记的内角A,B,C的对边分别为,若且,求角B的值.
已知等差数列是递增数列,且满足 (1)求数列的通项公式;(2)令,求数列的前项和
如图,在四棱锥中,底面是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.
已知成等差数列的三个正数的和为15,并且这三个数分别加上2、5、13后成为等比数列中的(1) 求数列的通项公式;(2) 数列的前n项和为,求证:数列是等比数列.
已知函数 ,.(Ⅰ)当 时,求函数 的最小值;(Ⅱ)当 时,讨论函数 的单调性;(Ⅲ)求证:当 时,对任意的 ,且,有.