(本小题满分14分)已知汕头市某学校高中部某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查。(Ⅰ)若要从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率; (Ⅱ)若男学生考前心理状态好的概率为0.6,女学生考前心理状态好的概率为0.5, 表示抽取的5名学生中考前心理状态好的人数,求P(=1)及E.
已知函数 (I)求的最大值和最小正周期; (II)若,求的值。
已知集合函数的定义域为集合B。 (I)若,求集合; (II)已知是“”的必要条件,求实数a的取值范围。
、如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点。 (Ⅰ) 若PA=AB=2,求三棱锥P-ABC的体积; (Ⅱ)证明:BE⊥平面PAC (Ⅲ)如何在BC上找一点F,使AD//平面PEF?并说明理由。
已知为偶函数,曲线过点,. (Ⅰ)求实数b、c的值; (Ⅱ)若曲线有斜率为0的切线,求实数的取值范围; (Ⅲ)若当时函数取得极值,确定的单调区间和极值.
等比数列{}的前n 项和为,已知,,成等差数列. (Ⅰ)求{}的公比q; (Ⅱ)求-=3,求数列{}的通项公式 (Ⅲ)数列{n}的前n项的和