已知函数(,为正实数).(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)若函数的最小值为,求的取值范围.
设无穷等比数列的公比为q,且,表示不超过实数的最大整数(如),记,数列的前项和为,数列的前项和为.(Ⅰ)若,求;(Ⅱ)若对于任意不超过的正整数n,都有,证明:.(Ⅲ)证明:()的充分必要条件为.
已知是抛物线上的两个点,点的坐标为,直线的斜率为k, 为坐标原点.(Ⅰ)若抛物线的焦点在直线的下方,求k的取值范围;(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为,求的最小值.
已知函数,其中是自然对数的底数,.(Ⅰ)求函数的单调区间;(Ⅱ)当时,试确定函数的零点个数,并说明理由.
如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求直线DH与平面所成角的正弦值;(Ⅲ)求二面角的大小.
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示. (Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值;(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为,求随机变量的分布列和数学期望.