在平面直角坐标系中,已知点A(4,0),点B(0,3). 点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.连结AQ,当△ABQ是直角三角形时,求点Q的坐标当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数
观察下列等式:①; ②;③; ④;……猜想并写出第个算式: ;请说明你写出的等式的正确性.把上述个算式的两边分别相加,会得到下面的求和公式吗?请写出具体的推导过程. .我们规定:分子是1,分母是正整数的分数叫做单位分数.任意一个真分数都可以表示成不同的单位分数的和的形式,且有无数多种表示方法.根据上面得出的两个结论,请将真分数表示成不同的单位分数的和的形式.(写出一种即可)
某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:
经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.企业有哪几种购买方案?哪种购买方案更省钱?
如图,抛物线c1:y=ax2-2ax-c与x轴交于A、B,且AB=6,与y轴交于C(0,-4 ).求抛物线c1的解析式;问抛物线c1上是否存在P、Q(点P在点Q的上方)两点,使得以A、C、P、Q为顶点的四边形为直角梯形,若存在,求P、Q两点坐标;若不存在,请说明理由;抛物线c2与抛物线c1关于x轴对称,直线x=m分别交c1、c2于D、E两点,直线x=n分别交c1、c2于M、N两点,若四边形DMNE为平行四边形,试判断m和n间的数量关系,并说明理由.
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4求证:△ABE∽△ADB;求AB的长延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸。山坡上有一棵与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示)。已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4米。求∠DAC的度数;求这棵大树原来的高度是多少米?(结果精确到个位,参考数据:,,)