学校举行了“善行校园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成 A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).(1)补全条形统计图.(2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.
(本小题满分8分)如图,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,求△BCD各角的度数.
(本小题满分5分)先化简,再选择一个你喜欢又使原式有意义的数代入求值.
(1)请画出△ABC关于y轴对称的△A1B1C1(其中A1,B1,C1分别是A,B,C的对称点,不写画法); (2)直接写出A1,B1,C1三点的坐标A1( ),B1( ),C1( ).
如图9所示,是边长为的等边三角形,其中是坐标原点,顶点在轴的正方向上,将折叠,使点落在边上,记为,折痕为。设的长为,的周长为,求关于的函数关系式.当//y轴时,求点和点的坐标.当在上运动但不与、重合时,能否使成为直角三角形?若能,请求出点的坐标;若不能,请说明理由.\
如图8所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.以拱桥的最高点为原点建立如图的坐标系,求抛物线的解析式;若洪水到来时,水位以每小时m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶.