学校举行了“善行校园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成 A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).(1)补全条形统计图.(2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.
如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.试判断△BMN的形状,并说明理由.
(1)计算:;(2)(3)解方程:
化简,求值:,其中m=.
已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点 H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.
如图,已知点A(6,0),点P(x,y)在第一象限,且x+y=8,设△OPA的面积S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时,P点的坐标.