已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,(1)求抛物线的方程;(2)若抛物线与直线无公共点,试在抛物线上求一点,使这点到直线的距离最短。
设函数f(x)=sin2ωx+2sinωx·cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0),求函数f(x)的值域.
已知向量a=(cosx,-),b=(sinx,cos2x),x∈R,设函数f(x)=a·b.(1)求f(x)的最小正周期.(2)求f(x)在[0,]上的最大值和最小值.
已知圆:,过定点作斜率为1的直线交圆于、两点,为线段的中点.(1)求的值;(2)设为圆上异于、的一点,求△面积的最大值;(3)从圆外一点向圆引一条切线,切点为,且有 , 求的最小值,并求取最小值时点的坐标.
圆内有一点,为过点且倾斜角为的弦.(1)当时,求;(2)当弦被点平分时,求出直线的方程;(3)设过点的弦的中点为,求点的坐标所满足的关系式.
已知△中,,,平面,,、分别是、上的动点,且.(1)求证:不论为何值,总有平面平面;(2)当为何值时,平面平面?