已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,(1)求抛物线的方程;(2)若抛物线与直线无公共点,试在抛物线上求一点,使这点到直线的距离最短。
(本小题满分14分)设是数列的前项和,. (1)求的通项; (2)设,求数列的前项和.
(本小题满分14分)已知集合 (Ⅰ)当时,求; (Ⅱ)求;求实数的取值范围.
.(本小题满分10分)已知函数f(x)=|2x-a|+a. (1)若不等式f(x)≤6的解集为{x|-2≤x≤3},求实数a的值; (2)在(1)的条件下,若存在实数n使f(n)≤m-f(-n)成立,求实数m的取值范围.
(本小题满分10分)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为(φ为参数,0≤φ≤π). (1)求C1的直角坐标方程; (2)当C1与C2有两个不同公共点时,求实数a的取值范围.
(本小题满分10分)如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P. (1)求证:AD∥EC; (2)若AD是⊙O2的切线,且CA=8,PC=2,BD=9,求AD的长.