已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,(1)求抛物线的方程;(2)若抛物线与直线无公共点,试在抛物线上求一点,使这点到直线的距离最短。
【2015高考安徽,文21】已知函数(Ⅰ)求的定义域,并讨论的单调性;(Ⅱ)若,求在内的极值.
【2015高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为5千米/小时,乙的路线是,速度为8千米/小时.乙到达地后原地等待.设时乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由.
【2015高考上海,文20】本题共2小题,第1小题6分,第2小题8分.已知函数,其中为实数.(1)根据的不同取值,判断函数的奇偶性,并说明理由;(2)若,判断函数在上的单调性,并说明理由.
【2015高考上海,理20】如图,,,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为千米/小时,乙的路线是,速度为千米/小时.乙到达地后原地等待.设时乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是千米.当时,求的表达式,并判断在上得最大值是否超过?说明理由.
【2015高考浙江,理18】已知函数,记是在区间上的最大值.(1)证明:当时,;(2)当,满足,求的最大值.