(本小题13分)某工厂要建造一个无盖长方体水池,底面一边长固定为8,最大装水量为72,池底和池壁的造价分别为元、元,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少?
(本题满分14分)设,分别为椭圆的左右焦点,过的直线与椭圆相交于,两点,直线的倾斜角为,到直线的距离为.(Ⅰ)求椭圆的焦距;(Ⅱ)如果,求椭圆的方程.
(本题满分12分)求使函数的图像全在轴上方成立的充要条件.
(本题满分12分)已知,周长为14,,求顶点的轨迹方程.
(本题满分12分)在等差数列{an}中,若a2+a3+a4+a5=34,且a2·a5=52.求数列{an}的通项公式an.
已知抛物线与直线交于A、B两点,O为坐标原点.(I)当k=1时,求线段AB的长;(II)当k在R内变化时,求线段AB中点C的轨迹方程;(III)设是该抛物线的准线.对于任意实数k,上是否存在点D,使得?如果存在,求出点D的坐标;如不存在,说明理由.