定义,,…,的“倒平均数”为().已知数列前项的“倒平均数”为,记().(1)比较与的大小;(2)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.(3)设数列满足,(且),(且),且是周期为的周期数列,设为前项的“倒平均数”,求.
(本小题满分12分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足.(Ⅰ)求B;(Ⅱ)若,设,,求函数的解析式和最大值.
已知函数 ,,(,为常数).(Ⅰ)若在处的切线过点,求的值;(Ⅱ)设函数的导函数为,若关于的方程有唯一解,求实数的取值范围;(Ⅲ)令,若函数存在极值,且所有极值之和大于,求实数的取值范围.
已知椭圆上的左、右顶点分别为,,为左焦点,且,又椭圆过点.(Ⅰ)求椭圆的方程; (Ⅱ)点和分别在椭圆和圆上(点除外),设直线,的斜率分别为,,若,证明:,,三点共线.
已知等比数列的前项和,且成等差数列.(Ⅰ)求的通项公式;(Ⅱ)设是首项为,公差为的等差数列,其前项和为,求满足的最大正整数.
如图,在四棱锥中,平面平面,为上一点,四边形为矩形, ,,.(Ⅰ)若,且∥平面,求的值;(Ⅱ)求证:平面.