定义,,…,的“倒平均数”为().已知数列前项的“倒平均数”为,记().(1)比较与的大小;(2)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.(3)设数列满足,(且),(且),且是周期为的周期数列,设为前项的“倒平均数”,求.
(本小题满分12分) 设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且=+2. (1)求数列{}的通项公式; (2)设数列{}的前n项和为,求证:≤<.
(12分)已知函数在上是增函数,在上为减函数。 (1)求f(x) ,g(x)的解析式; (2)求证:当x>0时,方程f(x)=g(x)+2有唯一解。
(12分)设函数满足条件f(-1+x)=f(-1-x),且关于x的不等式的解集为 (1)求函数f(x)的解析式; (2)若时,不等式恒成立,求实数t的取值范围。
(12分)若函数y=lg(3-4x+x2)的定义域为M,.当x∈M时, 求f(x)=2x+2-3×4x的最值及相应的x的值.
(12分)已知函数f(x)= (1)判断f(x)的奇偶性, (2)解不等式f(x)≥