已知函数有两个极值点,且直线与曲线相切于点。 (1) 求和 (2) 求函数的解析式; (3) 在为整数时,求过点和相切于一异于点的直线方程
已知:, (1)当时,恒有,求的取值范围; (2)当时,恰有成立,求的值. (3)当时,恒有,求的取值范围;
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=. (Ⅰ)求证:BD⊥平面PAC; (Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.
如图,在正方体ABCD-A1B1C1D1中. (1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D; (2)若M为A1B上的一动点,求证:DM∥平面D1B1C.
如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC, AB∥DC. (1)求证:D1C⊥AC1; (2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.
已知A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}. (1)若A⊆B,求a的取值范围; (2)若B⊆A,求a的取值范围.