已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是(1)求椭圆E的方程;(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
(Ⅰ)从这50名教师中随机选出2名,求2人所使用版本相同的概率; (Ⅱ)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为,求随机变量的分布列和数学期望。
已知函数(其中) (1)若,求函数的单调区间及极小值; (2)若直线对任意的都不是曲线的切线,求的最小值及实数的取值范围.
设椭圆的焦点分别为、,直线:交轴于点,且. (1)试求椭圆的方程; (2)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),试求四边形面积的最大值和最小值.
如图,PC⊥平面ABC,∠ACB=90°,D为AB中点,AC=BC=PC=2. (Ⅰ)求证:AB⊥平面PCD; (Ⅱ)求异面直线PD与BC所成角的大小; (Ⅲ)设M为线段PA上的点,且AP=4AM,求点A到平面BCM的距离.
已知平面区域恰好被面积最小的圆及其内部所覆盖. (1)试求圆的方程. (2)若斜率为1的直线与圆C交于不同两点满足,求直线的方程.