(本小题满分12分)已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.⑴用表示,并求的最大值;⑵求的极值.
如图,四边形为正方形,平面,,于点,,交于点. (1)证明: (2)求二面角的余弦值。
如图,正方形的边长为2,分别为的中点,在五棱锥中,为棱的中点,平面与棱分别交于点. (1)求证:; (2)若底面,且,求直线与平面所成角的大小,并求线段的长.
如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点。已知PA⊥AC,PA=6,BC=8,DF=5. 求证:(1)直线PA∥平面DEF; (2)平面BDE⊥平面ABC.
如图三棱柱中,侧面为菱形,. (Ⅰ)证明:; (Ⅱ)若,,AB=BC,求二面角的余弦值.
三棱锥及其侧视图、俯视图如图所示。设,分别为线段,的中点,为线段上的点,且。 (1)证明:为线段的中点; (2)求二面角的余弦值。