如图,设P是圆上的动点,点是在轴上的投影,为线段PD上一点,且.点、.(1)设在轴上存在定点,使为定值,试求的坐标,并指出定值是多少?(2)求的最大值,并求此时点的坐标.
证明:以抛物线焦点弦为直径的圆与抛物线的准线相切
已知双曲线C:的两个焦点为,点P是双曲线C上的一点,,且.(1)求双曲线的离心率;(2)过点P作直线分别与双曲线的两渐近线相交于两点,若,,求双曲线C的方程.
已知是双曲线的左,右焦点,点是双曲线右支上的一个动点,且的最小值为,双曲线的一条渐近线方程为. 求双曲线的方程;
已知椭圆和双曲线有公共的焦点,(1)求双曲线的渐近线方程(2)直线过焦点且垂直于x轴,若直线与双曲线的渐近线围成的三角形的面积为,求双曲线的方程
已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,求此双曲线的离心率e的最大值.