.(本小题满分12分) 已知过点的直线与抛物线交于、两点,为坐标原点.(1)若以为直径的圆经过原点,求直线的方程;(2)若线段的中垂线交轴于点,求面积的取值范围.
已知点在圆上运动,,点为线段MN的中点. (1)求点的轨迹方程; (2)求点到直线的距离的最大值和最小值..
如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,.. (1)求证:平面PAB丄平面PCD (2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.
设直线的方程为. (1)若在两坐标轴上的截距相等,求的方程; (2)若不经过第二象限,求实数的取值范围。
已知过曲线上任意一点作直线的垂线,垂足为,且. ⑴求曲线的方程; ⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
已知在处取得极值,且在点处的切线斜率为. ⑴求的单调增区间; ⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.