(本小题满分为14分)已知抛物线的焦点为F,A、B是热线上的两动点,且过A、B两点分别作抛物线的切线,设其交点为M。(I)证明为定值;(II)设的面积为S,写出的表达式,并求S的最小值。
过抛物线的焦点作一条斜率为k(k≠0)的弦,此弦满足:①弦长不超过8;②弦所在的直线与椭圆3x2+ 2y2= 2相交,求k的取值范围.
过双曲线C:的右焦点F作直线l与双曲线C交于P、Q两点,,求点M的轨迹方程.
知抛物线C:y2=4x,若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
已知P、Q是椭圆C:上的两个动点,是椭圆上一定点,是其左焦点,且|PF|、|MF|、|QF|成等差数列。求证:线段PQ的垂直平分线经过一个定点A;
已知点和,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线交于D、E两点,求线段DE的长.