(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c,且(1)求cosB的值;(2)若,且,求的值.
((本题16分)已知 (常数)(1)若求:① ;②(2)若展开式中不含x的项的系数的绝对值之和为729,不含y项的系数的绝对值之和为64,求n的所有可能值。
((本题15分)两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是,(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?(3)两人各射击5次,是否有99%的把握断定他们至少中靶一次?
((本题15分) 在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,(1)求k的值。(2)判断变换MN是否可逆,如果可逆,求矩阵MN的逆矩阵;如不可逆,说明理由.
(某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个 1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。
(已知圆的极坐标方程为:.将极坐标方程化为普通方程,写出圆的参数方程。若点P(x,y)在该圆上,求x+y的最大值和最小值。