已知是由满足下述条件的函数构成的集合:对任意,① 方程有实数根;② 函数的导数满足.(Ⅰ)判断函数是否是集合中的元素,并说明理由;(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,
在中,内角A,B,C的对边分别为,已知. (1)求的值; (2)若,求的面积S.
已知命题函数的定义域为R;命题方程有两个不相等的负数根,若是假命题,求实数的取值范围.
对于函数. (1)确定的单调区间; (2)求实数,使是奇函数,在此基础上,求的值域.
已知函数 (1)求不等式的解集; (2)若关于x的不等式的解集非空,求实数的取值范围.
选修4-4:坐标系与参数方程已知直线l:(t为参数)恒经过椭圆C:(j为参数)的右焦点F. (Ⅰ)求m的值; (Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|·|FB|的最大值与最小值.