结合数轴与绝对值的知识回答下列问题: 数轴上表示1和4的两点之间的距离是_________;表示-3和2的两点之间的距离是_________;表示-5和-4的两点之间的距离是_________;一般地,数轴上表示数和数的两点之间的距离等于_____________. 如果表示数和-2的两点之间的距离是3,那么=__________. 若数轴上表示数的点位于-4与2之间,求的值; 当______时,的值最小,最小值是____________
如图,AC⊥BC,cos∠ADC=,tanB=,AD=10,求:(1)AC的长;(2)BD的长.
(1)计算 (2)解方程
如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(–1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当P,Q运动t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状并求说明理由.(3)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由
△ABC是边长为4个单位长度的等边三角形,点F是边BC上的点,FD⊥AB,FE⊥AC,(1)求证:△BDF∽△CEF;(2)已知A、D、F、E四点在同一个圆上,若tan∠EDF=,求此圆的半径.(3)设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;
已知关于x的方程有实数根,(1)求m的取值范围﹒(2)若方程的一个根为1,求m的值﹒(3)设α、β是方程的两个实数根,是否存在实数m使得成立?如果存在,请求出来,若不存在,请说明理由﹒