如图,已知中,厘米,厘米,点为的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.(1)四边形ABCD一定是 四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时和之间的关系式;若不可能,说明理由;(3)设P(,),Q(,)()是函数图象上的任意两点,,,试判断,的大小关系,并说明理由.
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△,设旋转角为,记直线与的交点为P.(1)如图1,当时,线段的长等于 ,线段的长等于 ;(直接填写结果)(2)如图2,当时,求证:,且;(3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
如图,直线经过点A(4,0),B(0,3).(1)求直线的函数表达式;(2)若圆M的半径为2,圆心M在轴上,当圆M与直线相切时,求点M的坐标.
九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
已知该运动服的进价为每件60元,设售价为元.(1)请用含x的式子表示:①销售该运动服每件的利润是 元;②月销量是 件;(直接写出结果)(2)设销售该运动服的月利润为元,那么售价为多少时,当月的利润最大,最大利润是多少?
如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.