二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下所示,相应图象如图所示,结合表格和图象回答下列问题:抛物线y=ax2+bx+c的对称轴是直线x= ;方程ax2+bx+c=0的两根是x1= ,x2= ;求出二次函数y=ax2+bx+c的解析式及m的值;求当方程ax2+bx+c=k有解时k的取值范围.(结合图形直接写出答案)
解方程:
如图,抛物线与y轴突于A点,过点A的直线y=kx+l与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0) (1)求直线AB的函数关系式; (2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点产作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并求出线段MN的最大值; (3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.
如图,在△ABC中,∠C=90°,AC=8,BC=6。P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x。 (1)在△ABC中,AB= ; (2)当x= 时,矩形PMCN的周长是14; (3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。
已知正比例函数y=4x的图像与反比例函数y(k≠0)在第一象限的图像交于A点,过A点作x轴的垂线,垂足为P点,已知△OAP的面积为 (1)求反比例函数的解析式; (2)如果点B为反比例函数在第一象限图象上的点(点B与点A不重合),且点B的横坐标为1,在x轴上求一点M,使MA+MB最小。
新华机械厂工人的工作时间为每月22天,每天8小时,工资待遇为按件计酬,多劳多得,每月另加福利工资500元,按月结算。该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产。工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟。 (1)小李生产1件A产品和生产1件B产品需要各需要多长时间? (2)求小李每月的工资能达到2000元吗?