如图,在直角坐标平面内,函数(,是常数)的图象经过,,其中.过点作轴垂线,垂足为,过点作轴垂线,垂足为,连结,,.若的面积为4,求点的坐标;若,当时,求直线的函数的解析式.
如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________________.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使,请直接写出相应的BF的长:BF=_____.
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元?(2)若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
在正方形网格中建立如图所示的平面直角坐标系xoy.△ABC的三个顶点都在格点上,点A、B、C的坐标分别是A(4,4 )、B(1,2 )、C(3,2 ),请解答下列问题;(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)将△ABC绕点O逆时针旋转90°,画出旋转后的的△A3B3C3.并写出点A3的坐标:A3( , );
已知二次函数.(1)证明:无论m为何值,函数图象与x轴都有交点;(2)当图象的对称轴为直线时,求它与坐标轴的三个交点所围成的三角形的面积.
已知关于x的方程有一个实数根-2.求n的值与另一个根