一个口袋有2个红球和4个黄球,从中随机地连取3个球,每次取一个,记事件A=“恰有一个红球”,事件B=“第三个是红球”,求:(1)不放回时,事件A,B的概率;(2)每次抽后放回时,事件A,B的概率.
已知数列满足,若为等比数列,且.(1)求;(2)设,求数列的前n项和.
在△ABC中,角所对的边分别为a,b,c,(1)求角A;(2)若2sinC="3sinB," △ABC的面积,求a.
各项为正的数列满足,,(1)取,求证:数列是等比数列,并求其公比;(2)取时令,记数列的前项和为,数列的前项之积为,求证:对任意正整数,为定值.
函数,(1)若时,求的最大值;(2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
已知椭圆,离心率,且过点,(1)求椭圆方程;(2)以为直角顶点,边与椭圆交于两点,求 面积的最大值.