在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从此10张券中任抽2张,求:(1) 该顾客中奖的概率;(2) 该顾客获得的奖品总价值x (元)的概率分布列和期望Ex。
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=x+an+1cos x-an+2sin x满足f′=0.(1)求数列{an}的通项公式;(2)若bn=2,求数列{bn}的前n项和Sn.
已知{an}是一个公差大于0的等差数列,且满足a4a5=55,a3+a6=16(1)求数列{an}的通项公式;(2)若数列{an}和数列{bn}满足等式:an-1=,an=(为正整数),设数列{bn}的前项和,cn=(an+19)(Sn+50),数列{cn}前n项和为Tn,求Tn的最小值
设函数f(x)=a·b,其中向量,向量.(1)求f(x)的最小正周期;(2)在∆ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,a=,b+c=3,求b,c的长.
已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.(Ⅰ)求的值;(Ⅱ)求的单调区间;(Ⅲ)设,其中为的导函数.证明:对任意.
设函数(1)讨论函数的极值点;(2)若对任意的,恒有,求的取值范围.