甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如下图所示。 甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第6年2万只。乙调查表明:甲鱼池个数由第1年30个减少到第6年10个,请你根据提供的信息说明:(1)第2年甲鱼池的个数及全县出产甲鱼总数;(2)到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由;(3)哪一年的规模最大?说明理由
(本小题满分10分,坐标系与参数方程选讲) 己知在平面直角坐标系中,圆的参数方程为(为参数).以原点为极点,以轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为,直线与圆相交于两点,求弦的长.
【原创】选修4-2:矩阵与变换(本小题满分10分) 设二阶矩阵,满足,,求..
如图,,是半径为的圆的两条弦,它们相交于的中点,若, ,求的长.
已知函数。 (1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。 (2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由; (3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,恒有f(x)>g(x)成立。
已知数列中. (1)是否存在实数,使数列是等比数列?若存在,求的值;若不存在,请说明理由; (2)若是数列的前项和,求满足的所有正整数.