某新设备M在第1年可以生产价值120万元的产品,在使用过程中,由于设备老化及维修原因使得M的生产能力逐年减少,从第2年到第6年,每年M生产的产品价值比上年减少10万元;从第7年开始,每年M生产的产品价值为上年的75%.(I)求第n年M生产的产品价值的表达式; (II)该设备M从购买回来后马上使用,则连续正常使用10年可以生产多少价值的产品?
(本小题满分12分)已知函数f(x)=. (1)若f(x)在上是增函数,求实数a的取值范围; (2)若x=3是f(x)的极值点,求f(x)在上的最小值和最大值。
(本小题满分12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1, 点D是BC的中点,点E在AC上,且DE⊥A1E . (1)证明:平面A1DE⊥平面ACC1A1; (2)求直线AD和平面A1DE所成角的正弦值。
(本小题满分12分)已知f(x)=奇函数,且。 (1)求实数p , q的值。 (2)判断函数f(x)在上的单调性,并证明。
(本小题满分12分)已知集合,,如果,则这样的实数x是否存在?若存在,求出x;若不存在,说明理由。
已知数列满足,. (1)计算; (2)求数列的通项公式; (3)已知,设是数列的前项积,若对恒成立,求实数m的范围。