某地需要修建一条大型输油管道通过120公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程只需要在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为432万元,铺设距离为公里的相邻两增压站之间的输油管道费用为万元.设余下工程的总费用为万元.(1)试将表示成关于的函数; (2)需要修建多少个增压站才能使最小?
(本小题共13分)在平面直角坐标系xOy中,为坐标原点,以为圆心的圆与直线相切. (Ⅰ)求圆的方程; (Ⅱ)直线:与圆交于,两点,在圆上是否存在一点,使得四边形为菱形,若存在,求出此时直线的斜率;若不存在,说明理由.
(本小题共13分)为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取6个教学班进行调查.已知甲、乙、丙三所中学分别有12,6,18个教学班. (Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数; (Ⅱ)若从抽取的6个教学班中随机抽取2个进行调查结果的对比,求这2个教学班中至少有1个来自甲学校的概率.
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点. (Ⅰ)求证:CN⊥AB1; (Ⅱ)求证:CN //平面AB1M.
(本小题共13分)已知函数. (Ⅰ)求函数的最小正周期和值域; (Ⅱ)若为第二象限角,且,求的值.
(本小题共13分)若有穷数列{an}满足:(1)首项a1=1,末项am=k,(2)an+1= an+1或an+1="2an" ,(n=1,2,…,m-1),则称数列{an}为k的m阶数列. (Ⅰ)请写出一个10的6阶数列; (Ⅱ)设数列{bn}是各项为自然数的递增数列,若,且,求m的最小值. (考生务必将答案答在答题卡上,在试卷上作答无效)