(本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC可以绕点O作任意角度的旋转.(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;(2) 如果抛物线的对称轴经过点C,请你探究:①当,,时,A,B两点是否都在这条抛物线上?并说明理由;②设,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.
如图,抛物线交轴于两点(的左侧),交轴于点,顶点为。 (1)求点的坐标; (2)求四边形的面积; (3)抛物线上是否存在点,使得,若存在,请求出点的坐标;若不存在,请说明理由。
如图,等边△ABC中,点E、F分别是AB、AC的中点,P为BC上一点,连接EP,作等边△EPQ,连接FQ、EF。 (1)若等边的边长为20,且,求等边的边长; (2)求证:。
如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限内交于点,与轴交于点,与轴交于点,。 (1)求一次函数和反比例函数的解析式; (2)若在轴上存在点,使得,求点的坐标。
如图,点A是实验中学图书馆所在位置,每天早上9点有一辆洒水车以100米/分的速度从位于A点北偏东方向的B处开始沿着杏坛路BC洒水,已知杏坛路位于B点南偏西方向,AB的距离为800米,在离洒水车600米的区域内均会受到音乐声的影响。请问: (1)∠ABC的度数为°; (2)洒水车的音乐声是否对图书馆产生影响?若有影响,请求出影响持续的时间;若无影响,请说明理由。(,,,,,)
先化简,再求值:,其中是方程的根。