(本小题满分16分)如图,在平面直角坐标系中,已知,,,直线与线段、分别交于点、.(Ⅰ)当时,求以为焦点,且过中点的椭圆的标准方程; (Ⅱ)过点作直线∥交于点,记的外接圆为圆.① 求证:圆心在定直线上;② 圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.
已知函数. (1)当时,求的单调区间; (2)若函数在单调递减,求实数的取值范围.
已知分别为三个内角的对边, (1)求;(2)若,求的面积.
已知函数() (1)若曲线在点处的切线平行于轴,求的值; (2)当时,若直线与曲线在上有公共点,求的取值范围.
已知函数,且当时,的最小值为2. (1)求的值,并求的单调增区间; (2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.
已知函数满足对任意实数都有成立,且当时,,. (1)求的值; (2)判断在上的单调性,并证明; (3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数在处连续。试证明:在处连续.