(本题满分10分)如图.AB是⊙O的直径,AD是弦,∠DBC=∠A.(1)求证:BC与⊙O相切.(2)若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
已知关于x的方程(m-1)x2-(2m-1)x+2=0有两个正整数根.(1) 确定整数m值;(2) 在(1)的条件下,利用图象写出方程(m-1)x2-(2m-1)x+2+=0的实数根的个数.
如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.(1)请你帮小萍求出x的值.(2) 参考小萍的思路,探究并解答新问题:如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)
在平面直角坐标系xOy中,一次函数y=kx+b与反比例函数y=的图象交于A(1,6),B(a,3)两点 .(1)求k, k的值;(2)如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值.
已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.(1)求证:AD=DC;(2)过D作⊙O的切线交BC于E,若DE=2,CE=1,求⊙O的半径.