如图(图略),从一副扑克牌中选取红桃10,方块10,梅花5,黑桃8四张扑克牌,洗匀后正面朝下放在桌子上,甲先从中任意抽取一张后,乙再从剩余的三张扑克牌中任意抽取一张,用画树形图或列表的方法,求甲乙两人抽取的扑克牌的点数都是10的概率.
如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PCO=∠POC?若存在,求出符合条件的点P的坐标;若不存在,说明理由;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG//BD,BG=BD,连接BE,求∠BED的度数;
如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.
某商场将进价为30元的书包以40元售出, 平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。(3)请分析售价在什么范围内商家所获利润不低于6000元。
如图,利用一面墙(长度不限),用24m长的篱笆,围成一个面积为70m2的长方形场地.求长方形的长和宽