(1)探究归纳:如图,已知△ABC与△ABD的面积相等,试判断(1)AB与CD的位置关系,并说明理由.(2)结论应用:①如图,点M,N在反比例函数的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.证明:MN∥EF.②如图,点M,N在反比例函数y=的图象上,且M(2,m),N是第三象限内反比例函数y=的图象上一动点.过点M作ME⊥y轴,过点N作EF⊥x轴,垂足分别为E,F.说明MN∥EF.并求当四边形MEFN的面积为12时点N的坐标.
计算:(1) (2)+
加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分。⑴设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.⑵什么时候两种方式付费一样多?⑶如果你一个月只上网15小时,你会选择哪种方案呢?
如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠COD的度数.
列方程解应用题油桶制造厂的某车间主要负责生产制造油桶用的的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套. 生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?
先化简,再求值:已知 ,其中,.