(1)探究归纳:如图,已知△ABC与△ABD的面积相等,试判断(1)AB与CD的位置关系,并说明理由.(2)结论应用:①如图,点M,N在反比例函数的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.证明:MN∥EF.②如图,点M,N在反比例函数y=的图象上,且M(2,m),N是第三象限内反比例函数y=的图象上一动点.过点M作ME⊥y轴,过点N作EF⊥x轴,垂足分别为E,F.说明MN∥EF.并求当四边形MEFN的面积为12时点N的坐标.
王叔叔家的装修工程接近尾声,油漆工程结束了,经统计,油漆工共做50工时,用了150升油漆,已知油漆每升128元,共粉刷120平方米,在结算工钱时,有以下几种结算方案:(1)按工时算,每6工时300元;(2)按油漆费用来算,油漆费用的15%为工钱;(3)按粉刷面积来算,每6平方米132元。请你帮王叔叔算一下,用哪种方案最省钱?
公安人员在破案时常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a(cm)表示脚印长,b(cm)表示身高,其关系类似于b=7a+3.04.某次案件侦破中,抓获了两个可疑人员,甲的身高为1.87m,乙的身高为1.75m,犯罪现场留下的脚印经测量长为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?
解方程(本题共2小题,每小题8分,共计16分)(1) (2)
化简并求值(本题共2小题,每小题8分,共计16分)(1) ,其中,(2)已知,,当,时,计算的值。
如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为,直线与坐标轴分别交于A、C两点,点B的坐标为(4,1),⊙B与x轴相切于点M。(1)求点A的坐标及∠CAO的度数;(2)⊙B以每秒1个单位长度的速度沿x轴负方向平移,同时,若直线绕点A顺时针匀速旋转,当⊙B第一次与⊙O相切时,直线也恰好与⊙B第一次相切,见图(2)求B1的坐标以及直线AC绕点A每秒旋转多少度?(3)若直线不动,⊙B沿x轴负方向平移过程中,能否与⊙O与直线同时相切。若相切,说明理由。