如图所示,在梯形ABCD中,已知AB∥DC, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.(1)求∠DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L.(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说出个数即可)
已知向量,,满足,且与的夹角等于,与的夹角等于,,求,.
已知中,角、、所对的边分别为、、,满足. (1)求角的值; (2)若,,成等差数列,试判断的形状.
已知集合,. (1)若,求; (2)若,求实数的取值范围.
已知数列{}满足是数列{}的前n项和. (1)若数列{}为等差数列: ①求数列{}的通项公式; ②若数列满足,数列满足,试比较数列的前n项和与的前n项和的大小; (2)若对任意的恒成立,求实数x的取值范围.
已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且. (1)求直线的方程; (2)求圆的方程; (3)设点在圆上,试问使△的面积等于8的点共有几个?证明你的结论.