如图所示,在梯形ABCD中,已知AB∥DC, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.(1)求∠DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L.(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说出个数即可)
已知三角形两边长分别是8和6,第三边长是一元二次方程x2-16x+60=0的一个根.请用配方法解此方程,并计算出三角形的面积.
已知三角形的两边长分别为3和5,第三边长为c,化简.
如图,在直角梯形ABCD中,AD∥BC,,AD=6,BC=8,,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止. 设点P,Q运动的时间是t秒(t>0). (1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围). (2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积. (3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
如图,一次函数的图像与反比例函数的图像交于两点,与轴交于点,与轴交于点,已知,点的坐标为,过点作轴,垂足为。 (1)求反比例函数和一次函数的解析式; (2)求的面积。 (3)根据图像回答:当x 为何值时,一次函数的函数值大于 反比例函数的函数值?
如图,梯形中,且,、分别是两底的中点,连结,若,求的长。