如图,点在上,交于点,,.求证:
如图,已知 AB 是 ⊙ O 的直径,弦 CD 与直径 AB 相交于点 F .点 E 在 ⊙ O 外,作直线 AE ,且 ∠ EAC = ∠ D .
(1)求证:直线 AE 是 ⊙ O 的切线.
(2)若 BC = 4 , cos ∠ BAD = 3 4 , CF = 10 3 ,求 BF 的长.
在 4 × 4 的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个 4 × 4 的方格内限画一种)
要求:
(1)5个小正方形必须相连(有公共边或公共顶点视为相连)
(2)将选中的小正方形方格用黑色签字笔涂成阴影图形.(若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)
如图,线段 AB 、 CD 分别表示甲、乙两建筑物的高, BA ⊥ AD , CD ⊥ DA ,垂足分别为 A 、 D .从 D 点测到 B 点的仰角 α 为 60 ° ,从 C 点测得 B 点的仰角 β 为 30 ° ,甲建筑物的高 AB = 30 米.
(1)求甲、乙两建筑物之间的距离 AD .
(2)求乙建筑物的高 CD .
某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.
(1)设用于购买文化衫和相册的总费用为 W 元,求总费用 W (元 ) 与购买的文化衫件数 t (件 ) 的函数关系式.
(2)购买文化衫和相册有哪几种方案?为使拍照的资金更充足,应选择哪种方案,并说明理由.
某校为提高学生身体素质,决定开展足球、篮球、排球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)
(1)这次活动一共调查了多少名学生?
(2)补全条形统计图.
(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.