已知是边长为的正方形ABCD的中心,点E、F分别是AD、BC的中点,沿对角线AC把正方形ABCD折成直二面角D-AC-B;(Ⅰ)求∠EOF的大小;(Ⅱ)求二面角E-OF-A的余弦值;(Ⅲ)求点D到面EOF的距离.
已知平面内两点(-1,1),(1,3). (Ⅰ)求过两点的直线方程; (Ⅱ)求过两点且圆心在轴上的圆的方程.
已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上, (Ⅰ)求椭圆E的方程; (Ⅱ)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
已知P()为函数图像上一点,O为坐标原点,记直线OP的斜率。 (Ⅰ)求函数的单调区间; (Ⅱ)设,求函数的最小值。
正项数列的前n项和为,且。 (Ⅰ)证明数列为等差数列并求其通项公式; (2)设,数列的前n项和为,证明:。
为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收人族”。 (Ⅰ)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关? 已知:, 当<2.706时,没有充分的证据判定赞不赞成楼市限购令与收入高低有关; 当>2.706时,有90%的把握判定赞不赞成楼市限购令与收入高低有关; 当>3.841时,有95%的把握判定赞不赞成楼市限购令与收入高低有关; 当>6.635时,有99%的把握判定赞不赞成楼市限购令与收入高低有关。
(Ⅱ)现从月收入在[55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率。