某小区要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水,连喷头在内,柱高为0.8m,水流各个方向上沿形状相同的抛物线路径落下,如图1所示。根据设计图纸已知:在图2所示直角坐标系中水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是.喷出的水流距水平面的最大高度是多少?
如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AD于F,△OBD是等边三角形。(1)求证:OF∥BD;(2)求证:△AFO≌△DEB;(3)若BE=4cm,求阴影部分的面积。
【阅读材料】己知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切⊙O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r∴(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC分别相切于D、E和F,己知AD=3,BD=2,求r的值.
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.(1)尝试探究:在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,CG和EH的数量关系是________,的值是________.(2)类比延伸:如图2,在原题条件下,若=m(m>0)则的值是________(用含有m的代数式表示),试写出解答过程.(3)拓展迁移:如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若=a,=b(a>0,b>0)则的值是________(用含a、b的代数式表示).
矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.
如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.