(本小题满分12分)已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为.(1)求椭圆C的方程;(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
求值:(1) (2)
已知集合,集合 (1)若,求集合;(2)若,求实数的取值范围
已知函数,,其中且. (Ⅰ) 当,求函数的单调递增区间; (Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标; (Ⅲ)设函数(是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%. 若,,请你分析能否采用函数模型y=作为生态环境改造投资方案.
在平面直角坐标系中,已知圆:和直线:,为上一动点,,为圆与轴的两个交点,直线,与圆的另一个交点分别为. (1)若点的坐标为(4,2),求直线方程; (2)求证直线过定点,并求出此定点的坐标.