在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
(12分)如图,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是线段A1B1的中点. (1)证明:面⊥平面A1B1BA; (2)证明:; (3)求棱柱ABC—A1B1C1被平面分成两部分的体积比.
设函数给出下列四个论断: ①它的周期为; ②它的图象关于直线对称; ③它的图象关于点对称;④在区间上是增函数。 请以其中两个论断为条件,另两个为结论,写出一个正确的命题: .(用符号表示)
已知椭圆过点,且离心率。 (Ⅰ)求椭圆方程; (Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。
(12分)某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为,且知当利率为0.012时,存款量为1.44亿;又贷款的利率为时,银行吸收的存款能全部放贷出去;若设存款的利率为,;试写出存款量f(x)与存款利率的关系式,且当为多少时,银行可获得最大收益?
(12分)已知,,且,求: ⑴·及; ⑵若的最小值为-,求实数的值.