如图,已知直线与抛物线和圆都相切,F是C1的焦点.(1)求m与a的值;(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA、FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;(3)在(2)的条件下,记点M点所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P、Q两点,求△NPQ的面积S的取值范围.
甲、乙两名考生在填报志愿时都选中了、、、四所需要面试的院校,这四所院校的面试安排在同一时间.因此甲、乙都只能在这四所院校中选择一所做志愿,假设每位同学选择各个院校是等可能的,试求: (Ⅰ)甲、乙选择同一所院校的概率; (Ⅱ)院校、至少有一所被选择的概率.
已知函数()均在函数的图象上。 (Ⅰ)求数列的通项公式; (Ⅱ)令证明:
已知函数, (Ⅰ)若在上的最大值为,求实数b的值; (Ⅱ)若对任意x∈[1,e],都有恒成立,求实数a的取值范围; (Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.
已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是,过直线上一点引椭圆的两条切线,切点分别是A、B. (Ⅰ)求椭圆的方程; (Ⅱ)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点,并求出定点的坐标; (Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数,使得成立,若成立求出的值,若不存在,请说明理由
在抽样方法中,有放回抽样与无放回抽样中个体被抽到的概率是不同的,但当总体的容量很大而抽取的样本容量很小时,无放回抽样可以近似看作有放回抽样。现有一大批产品,采用随机抽样的方法一件一件抽取进行检验。若抽查的4件产品中未发现不合格产品,则停止检查,并认为该批产品合格;若在查到第4件或在此之前发现不合格产品,则也停止检查,并认为该批产品不合格。假定该批产品的不合格率为0.1,设检查产品的件数为X。 (Ⅰ)求随机变量X的分布列和数学期望; (Ⅱ)通过上述随机抽样的方法进行质量检查,求认为该批产品不合格的概率