如图,已知直线与抛物线和圆都相切,F是C1的焦点.(1)求m与a的值;(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA、FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;(3)在(2)的条件下,记点M点所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P、Q两点,求△NPQ的面积S的取值范围.
先后2次抛掷一枚骰子,将得到的点数分别记为a,b. (1)求直线ax+by+5=0与圆x2+y2=1相切的概率; (2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
从某校参加2012年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据. (1)根据表中已知数据,你认为在①、②、③处的数值分别为,,. (2)补全在区间 [70,140] 上的频率分布直方图; (3)若成绩不低于100分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
已知的边所在直线的方程为,满足, 点在所在直线上且. (Ⅰ)求外接圆的方程; (Ⅱ)一动圆过点,且与的 外接圆外切,求此动圆圆心的轨迹的方程; (Ⅲ)过点斜率为的直线与曲线交于相异的两点,满足,求的取值范围.
设函数. (Ⅰ)若,求的最小值; (Ⅱ)若,讨论函数的单调性.
如图,PA垂直于矩形ABCD所在的平面,,E、F分别是AB、PD的中点. (Ⅰ)求证:平面PCE 平面PCD; (Ⅱ)求三棱锥P-EFC的体积.