.如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=40°(1)求证:EF⊥平面BCE;(2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE(3)求二面角F—BD—A的大小。
已知函数 (1)若是的极值点,求的极大值; (2)求实数的范围,使得恒成立.
已知正项数列满足:,数列的前项和为,且满足,. (1) 求数列和的通项公式; (2)设,数列的前项和为,求证:.
如图所示的多面体中, 是菱形,是矩形,面,. (1)求证:平; (2))若,求四棱锥的体积.
小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示. (1)根据图中的数据信息,求出众数和中位数(精确到整数分钟); (2)小明的父亲上班离家的时间在
上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.
已知函数. (1)求的值; (2)求函数的最小正周期及单调递增区间.