如图,某小区有一长为30m,宽为20m的广场,图案如下,其中白色区域四周出口的宽度一样.小明在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在黑色区域的概率是,那么白色区域四周出口的宽度应是多少?
如图,用直尺和圆规作出△ABC的外接圆⊙O (不写作法,保留作图痕迹)若∠ABC=110°,求∠AOC的度数
抛物线交轴于、两点,交轴于点,顶点为.写出抛物线的对称轴及、两点的坐标(用含的代数式表示)连接并以为直径作⊙,当时,请判断⊙是否经过点,并说明理由;在(2)题的条件下,点是抛物线上任意一点,过作直线垂直于对称轴,垂足为. 那么是否存在这样的点,使△与以、、为顶点的三角形相似?若存在,请求出点的坐标;若不存在,请说明理由.
宏达纺织品有限公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额(万元)之间满足正比例函数关系:;如果单独投资B种产品,则所获利润(万元)与投资金额(万元)之间满足二次函数关系:.根据公司信息部的报告,,(万元)与投资金额(万元)的部分对应值(如下表)填空:_______________________;_______________________;如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为(万元),试写出与某种产品的投资金额x之间的函数关系式.请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为.试求袋中绿球的个数;第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率
如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设AE=xcm,DF=ycm.求证:△DFA∽△ABE;试求y与x之间的函数关系式,并求出自变量的取值范围.