(本小题满分13分)已知椭圆C的中心在圆点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为(I)求椭圆C的方程;(II)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。
计算下列各式的值(每小题6分,共12分) (1);(2)
(本小题满分14分)已知, 若函数在上的最大值为,最小值为, 令. (1)求的表达式; (2)若关于的方程有解,求实数的取值范围.
(本小题满分14分)已知圆的圆心坐标为, 直线与圆相交于、两点,. (1)求圆的方程; (2)若, 过点作圆的切线, 切点为,记, 点到直线的距离为, 求的取值范围.
(本小题满分14分)已知等差数列的前项和为,且, . (1)求数列的通项公式; (2)令,求证:.
(本小题满分14分)如图,在三棱锥中,,点是线段的中点,平面平面. (1)在线段上是否存在点, 使得平面? 若存在, 指出点的位置, 并加以证明;若不存在, 请说明理由; (2)求证:.