(本小题满分13分)已知椭圆C的中心在圆点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为(I)求椭圆C的方程;(II)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。
如图,SA⊥平面ABCD,四边形ABCD为正方形,SA=,AB=1. (1)求证:AB⊥平面SAD (2)求异面直线AB与SC所成角的大小.
已知等比数列中,.求 (1)等比数列的通项公式; (2)数列的前6项和
已知三角形ABC的三个内角∠A、∠B、∠C所对的边长分别为a、b、c,且A是锐角,sinA=,c="2" ,b=3. (1)求cosA , tanA (2)求a的值.
(本小题满分14分) 设数列的前项和为,已知,(为常数,,),且成等差数列. (1)求的值; (2)求数列的通项公式; (3)若数列是首项为1,公比为的等比数列,记,,.证明:.
(本小题满分14分) 已知的周长为,且,的面积为, (1)求边的长; (2)求的值.