(本小题满分14分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。 (1)证明:A1B1⊥C1D;(2)当的大小。
(本小题满分10分)如图所示,在三棱柱中,平面,,,. (Ⅰ)求三棱锥的体积; (Ⅱ)若是棱的中点,为的中点,证明平行平面
如图,是一个奖杯的三视图(单位:cm),底座是正四棱台. (Ⅰ)求这个奖杯的体积(取); (Ⅱ)求这个奖杯底座的侧面积.
(本小题满分12分)已知数列满足,数列满足. (1)证明数列是等差数列,并求数列的通项公式; (2)求数列的前项和.
(本小题满分12分)某人上午7:00乘汽车以千米/小时匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以千米/小时匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地。设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费元,那么分别是多少时走的最经济,此时花费多少元?
数列中,且满足( ) (1)求数列的通项公式; (2)设,求.