三角形的三个内角、、的对边的长分别为、、,有下列两个条件:(Ⅰ)、、成等差数列;(Ⅱ)、、成等比数列。现给出三个结论:①;②;③.请你选取给定的两个条件中的一个条件为条件,三个结论中的两个为结论,组建一个你认为正确的命题,并证明之
选修4-4:坐标系与参数方程(本小题满分10分) 在极坐标系中,已知圆与直线相切,求实数a的值.
选修4—2:矩阵与变换 已知矩阵满足:,其中是互不相等的实常数,是非零的平面列向量,,,求矩阵.
(选修4—1:几何证明选讲)如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.
(本小题满分16分)已知数列(,)满足,其中,. (1)当时,求关于的表达式,并求的取值范围; (2)设集合. ①若,,求证:; ②是否存在实数,,使,,都属于?若存在,请求出实数,;若不存在,请说明理由.
已知函数(为常数),其图象是曲线. (1)当时,求函数的单调减区间; (2)设函数的导函数为,若存在唯一的实数,使得与同时成立,求实数的取值范围; (3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.